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Most dynamic models for target tracking are derived for a

flat Earth. When simulating the trajectories of targets over long

ranges, the curvature of the Earth becomes important. This paper

demonstrates how most nonlinear, 3D, continuous-time, flat-Earth

dynamic models can be easily adapted for use on a curved Earth

without incorrectly spiraling into the poles as is typical of previous

techniques. The algorithm is demonstrated with flat-Earth non-

maneuvering, turning, weaving, and spiraling dynamic models. The

underlying technique can also compute geodesic curves on or above

the Earth in a singularity-free manner when used with a non-

maneuvering dynamic model.
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THE QUICK AND DIRTY IMPLEMENTATION

The mapping of a flat-Earth, continuous-time dy-

namic model to a curved-Earth is embodied in the

rewritten drift function of (33), which rewrites the

function in terms of new, rotating bases. Readers who

want to quickly map continuous-time flat-Earth dy-

namic models quickly to an ellipsoidal Earth approx-

imation without going through the details of the math-

ematics can skip to the algorithmic summary in Fig. 6.

The flat-Earth dynamic model should consist of, at a

minimum, position and velocity components as in (6).

I. INTRODUCTION

The modeling of aerospace vehicle dynamics with

varying degrees of freedom and accounting for the

Earth’s gravity has been extensively studied, for ex-

ample in [84], where a number of models are pre-

sented. However, such curved-Earth target models of-

ten require knowledge about basic aircraft aerodynamic

parameters, such as the lift, thrust, and drag. On the

other hand, target tracking algorithms in radar sys-

tems must be able to maintain track on targets with

known aerodynamic models as well as on targets that

cannot be identified. Thus, a number of lower-fidelity

dynamic models, such as those surveyed in [40] and

[41], are commonly used in tracker simulations. These

low-fidelity simulations can often be defined using a

number of simple parameters, like the limits on the

speed, turn rate, range and ceiling of three well-known

fighter aircraft shown in Table I. The simulations in Sec-

tion V use these bounds to justify the realism of the

simulated scenarios. Unfortunately, most of the non-

ballistic models in [40] as well as the ballistic mod-

els in [41] and [83, Ch. 8, 9] are made ignoring the

curvature of the Earth. When tracking targets using

networked radars, the curvature and undulation of the

Earth can become significant. For example, if a flat-

Earth dynamic model is propagated over a long dis-

tance, a target in level flight under a flat-Earth dy-

namic model will tangentially depart a curved Earth.

This paper derives a technique for using arbitrary,

nonlinear, continuous-time, deterministic, flat-Earth dy-

namic models on a curved Earth that mitigates this

error.

TABLE I

A number of basic parameters for Russian MiG-29, the Chinese and

Pakistani FC-1, and the American F-16 fighter aircraft are taken

from [30] and [75] (No specific model of F-16 is used). The

parameters listed above are not sufficient for high-fidelity modeling

of the aerodynamics of the aircraft, but can set bounds for simple

models when testing tracking algorithms.

MiG-29 FC-1 F-16

Positive G-Force Limit 9 G 8.5 G 9 G

Maximum Speed (At Altitude) 679 m/s 347 m/s 670 m/s

Service Ceiling 17 km 16 km > 15 km

Maximum Range 1,500 km 2,037 km > 3,222 km
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The best-known published attempts to adapt flat-

Earth dynamic models for use on a curved Earth for tar-

get tracking are [43] and [81], where flat-Earth discrete-

time dynamic models are applied in local East-North-

Up (ENU) coordinate systems that rotate as the aircraft

moves above the surface of the Earth.1 However, such

a constant-bearing approximation is only valid when

going East-West or North-South, but not at any other

bearings, and the approximation becomes extremely bad

near and at the poles. Considering that the sea ice in the

Northwest Passage sufficiently melted for the first time

in recorded history in 2007 to allow travel through the

passage [8], it is increasingly likely that ships (possibly

carrying radars) will regularly approach the North Pole

in the future.

On the other hand, the curvature of an ellipsoidal

Earth has been properly handled in the design of in-

ertial navigation systems, where a wander coordinate

system, also known as a wander frame, the wander az-

imuth coordinate frame, and the wander azimuth nav-

igation frame, is often maintained in place of a lo-

cal East-North-Up coordinate system. Such a coordi-

nate system keeps one axis aligned with the gravita-

tional (or ellipsoidal) vertical, and the other axes are

kept in the local tangent plane, without any particular

relation to true North. The wander coordinate system

is used in [27], [46] for strapdown inertial navigation

systems, where gyroscopes are fixed to the body of an

aircraft rather than remaining on a platform that tries

to physically rotate to maintain a constant orientation

to true North which is increasingly difficult as one ap-

proaches the poles.2 The wander coordinate system is

used in [50] for simulating aircraft trajectories under

continuous-time dynamic models on a curved Earth,

where solutions for four dynamic models are provided.

More recently, the method of [50] was rediscovered and

applied to curved-Earth target simulation in [62], [63],

where the mapping of a flat-Earth model to a curved-

Earth is referred to as a “geodetic projection.” In this pa-

per, a method of mapping flat-Earth dynamic models to

a curved Earth is derived in vector notation, generalized

to describe motion on an arbitrary terrain or above an el-

lipsoidal Earth. Under an ellipsoidal Earth model, when

considering similar dynamic models, the algorithm of

this paper reduces to the solutions of [50], [62].

In [73, Sec. 5], similar physical principles to those

used in the models of [84, Ch. 8, 9, 10] (which re-

quire a detailed description of the flight dynamics of

the aircraft) are used to obtain simplified dynamic ex-

pressions for straight, level flight, for steady turns, and

for pitching flight (weaving up and down) above a

spherical Earth. However, no expressions for spiraling

1When considering only straight-line trajectories, algorithms such as

[19] are also relevant. However, this paper considers more general

dynamic models.
2Gyroscopic systems can infer the direction of true North based on

the precession of the gyroscope as the Earth rotates, as observed by

Foucault in 1852 [22].

(corkscrewing) targets are given, with the justification

being that the models would have to be overly simplified

for a solution to be obtained. In the following sections,

it is shown that most flat-Earth dynamic models can

be plugged into a simple algorithm to adapt them for

use above a curved Earth, including a spiraling model

derived in Appendix E.

A constant-bearing course means that a target main-

tains the same direction with respect to a local ENU co-

ordinate system. As described in [1], a constant-bearing

course is called a rhumb, whereas the curve on the

surface of the Earth traced out by such a course is a

loxodrome. An example of a constant-bearing coarse is

a ship traveling 20± North of East. A constant-bearing

course is a straight line on a Mercator projection map.

However, as clearly illustrated in Fig. 7(c) in Section

V and as discussed in detail in [1], constant-bearing

courses that do not follow East-West or North-South

trajectories spiral infinitely as an object approaches the

poles. The algorithms of [43] and [81] cause straight-

line targets to follow rhumb lines. A rhumb is seldom

the shortest trajectory between any two points and a

navigator must constantly update a vehicle’s bearing to

travel the shortest path.3

Before taking the time to implement a complicated

curved-Earth simulation routine, one should first check

whether the scale of the bias accumulated as a result

of ignoring the Earth’s curvature matters. As derived in

[10], a simple closed-form approximation for the bias,

¢, accumulated using a local flat-Earth approximation

can be derived using a spherical Earth approximation,

¢¼
s
a2
μ
1¡ cos

·
L

a

¸¶2
+

μ
L¡ asin

·
L

a

¸¶2
, (1)

where L is the distance traveled and a is the radius of the

spherical Earth. For example, using the semi-major axis

a= 6,378,137:0 m from the reference ellipsoid of the

U.S. Department of Defense’s (DoD) World Geodetic

System 1984 (WGS-84) standard [13], a target traveling

five kilometers in a straight line would accumulate a bias

of only 1.96 m. On the other hand, a target traveling

500 km would accumulate a bias of 19.6 km, which is

probably significant in most instances.

Considerable research over the years has focused

on following the shortest and straightest path along a

curved Earth or other surface. It is reasonable to assume

that a target obeying a flat-Earth dynamic model on a

curved Earth experiences no accelerations in the local

tangent plane to the surface beyond those present in

the flat-Earth model. That is, the target is not pulled

left or right by any accelerations that are not part of

3For example, a rhumb-line-based navigation technique was imple-

mented for operational use in the U.S. Navy’s Navigation Sensor Sys-

tem Interface (for ships) when handling optical celestial observations

in the 1990s [31], [32]. However, in the presence of other navigation

sources (for example, Global Positioning System [GPS] satellites) and

near the poles, one would assume that navigation software would take

the shortest path rather than following a rhumb line.
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the flat-Earth model, but it must be tipped as it moves

so that the vertical axis of its local coordinate system

remains aligned with the direction of acceleration due

to gravity.4

A geodesic curve5 between two points on a surface

is the locally shortest path between those points con-

strained to the surface. A geodesic curve also represents

a curve of zero tangential acceleration as discussed, for

example in [60]. Geodesics are studied in the mathemat-

ical field of differential geometry, more information on

which is available in [15, Sec. 4-4], among many other

sources. As discussed in Section II, a target lacking ac-

celeration in the local tangent plane under a constant-

velocity flat-Earth model mapped to a curved Earth will

follow a geodesic curve.

A common method of describing the curvature or

shape of the Earth is in terms of variations in the

gravitational field of the Earth. For example, altitudes

on maps are usually taken with respect to mean sea

level (MSL), which is a hypothetical surface of constant

gravitational potential. Geodesy is the study of the shape

of the Earth, especially in terms of its gravity potential.

A brief overview of geodetic concepts is given in [42],

with a more thorough introduction provided in the text

[29]. Section IV describes the gravitational shape of the

Earth, focusing on a simple ellipsoidal approximation

that is used in the development of the flat-Earth-to-

curved-Earth mapping algorithm of this paper.

An ellipse of revolution is the three-dimensional sur-

face formed by rotating an ellipse around its semi-major

axis . The shape of the Earth is approximately an el-

lipse of revolution formed by rotating an ellipse about

its minor axis. This type of an ellipsoidal is often called

an oblate spheroid.6 On the other hand, an ellipse of

rotation formed by rotating an ellipse about its major

axis is known as a prolate spheroid. The literature often

refers to an approximation of the Earth’s shape using

an ellipse of revolution as an “ellipsoidal approxima-

tion.” For the purposes of navigation, a lot of work has

been done studying geodesic curves using an ellipsoidal

approximation of the Earth. Though navigation litera-

ture often uses circular or elliptical curves to approx-

imate geodesic paths on an ellipsoidal Earth, geodesic

curves are generally neither elliptical nor circular as is

discussed in [79], and this paper does not use circular or

elliptical approximations when mapping flat-Earth tra-

jectories to a curved Earth.

4In some instances, not considered in this paper, one might also

wish to account for the Coriolis force. The Coriolis force is a small,

velocity-dependent force to which a moving object on the surface of

the Earth appears to be subjected when viewed from an Earth-fixed

coordinate system (a derivation is given in [69, Ch. 7]).
5A geodesic curve on a sphere or an ellipsoid is sometimes referred to

as an orthodrome (in contrast to a loxodrome). However, the term or-

thodrome is more frequently applied to geodesic curves on the surface

of spheres rather than general ellipsoids.
6A more generally shaped ellipsoid is known as a triaxial ellipsoid.

Navigators often study the direct and indirect geode-

tic problems. In the direct geodetic problem, one must

determine the ending point of a trajectory when given a

starting point, an initial bearing, and a distance. Though

the primary focus of this paper is the adaptation of flat-

Earth motion models to a curved Earth, the algorithm

in this paper can also be used with a non-maneuvering

motion model to solve the direct geodetic problem, pro-

viding Cartesian coordinates of points along the trajec-

tory. Unlike existing algorithms for solving the direct

geodetic problem, which are constrained to the surface

of the Earth, the algorithm of this paper can solve the

problem for arbitrary constant altitudes above the Earth.

The algorithm of this paper does not solve the indirect

geodetic problem. However, algorithms that solve the

indirect geodetic problem can be used as a basis for

confirming the validity of the direct geodetic solutions

obtained by the algorithm in this paper.

In the indirect geodetic problem, one is tasked with

finding the shortest path between two points on the

surface of the Earth. Algorithms that solve the indirect

geodetic problem, which is to determine the initial head-

ing and distance traveled to go from one point (a) to

another point (b) along the shortest geodesic path, are

commonly used with an ellipsoidal Earth approxima-

tion in navigation applications. Since non-maneuvering,

level, flat-Earth motion models follow geodesic curves

(solving the direct geodetic problem), the validity of the

algorithm developed in this paper can be verified for

level flight using the solution to the indirect geodetic

problem. That is, an initial target state can have po-

sition components corresponding to point (a) and an

initial velocity vector that points in the direction of the

solution to the indirect geodetic problem from (a) to

(b). If the model is propagated forward in time such

that it covers a distance equal to the distance between

(a) and (b) found when solving the indirect geodetic

problem, then the target should be located at point (b).

Any deviation from point (b) would indicate an error in

the target propagation algorithm or numerical precision

limitations.

A detailed look at a number of traditional methods

for solving the direct and indirect problems is given in

[61], including a derivation of Vincenty’s equation in

[12], which is one of the most commonly used tech-

niques, but for which a derivation is lacking in Vin-

centy’s paper [77]. With modern computers, differen-

tial equation solvers can be used to solve both the di-

rect and indirect problems of geodesics [38], [57], [64],

[74], and accurate iterative techniques are also available

[34], [35].

The majority of the algorithms in the literature for

solving the indirect geodetic problem are not suitable

for use in any mission-critical navigation system, be-

cause they will fail if two points lie nearly on the same

meridian (have the same longitude or longitudes ap-

proximately 180± apart). However, one robust algorithm
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Fig. 1. In (a), a vector is parallel transported along a path in a plane. At all points along the path, the vector remains parallel to the original

vector. On the other hand, a vector in the Darboux frame in a plane rotates with the changing direction of the curve as shown in (b). Thus, a

vector that is initially perpendicular to the curve remains perpendicular to the curve.

is given in [34], [35]. This algorithm is convenient to use

both because it is well documented and because code

implementing it is available for Matlab at [36] and for C,

Fortran, Java, and a number of other programming lan-

guages at [37]. The algorithm provides an initial head-

ing to reach the destination as well as the geodesic dis-

tance between the points. However, the geodesic curves

used in the simulation section (for validating the solu-

tion to the direct geodetic problem provided by the al-

gorithm of this paper) are calculated using the algorithm

of [57]. Although the algorithm of [57] is not suitable

for mission-critical navigation, it provides the trajectory

in a format that can be easily plotted.

The examples in this paper focus on the use of an

ellipsoidal Earth approximation, because it is simple

and because higher-order gravitational approximations

would not be expected to provide more accurate pre-

dictions, as air pressure variations begin to dominate

at higher precisions. A commercial aircraft that flies at

a constant instrument “altitude” reading varies its true

height above the ground and above mean sea level, be-

cause most commercial aircraft operate in regions where

their altitudes are computed based on a reference air

pressure and not on current meteorological conditions.7

As a result, a plane that is flying at a constant altitude

according to its own instruments does not fly a precise

geodesic curve.

Using the data offered by [52], the WGS-84 geoid,

a higher-order approximation than the reference ellip-

soid for gravity at sea level, differs from the reference

ellipsoid up to +84 m and ¡107 m, which is less than
7In the United States, aircraft below 18,000 ft (5,486.4 m) determine

their altitudes based on their height determined from the local pres-

sure and the current pressure reading on the ground, translating into

a “true” altitude; whereas aircraft operating above 18,000 ft assume

the presence of a standard atmosphere, so their true altitude varies

with local pressure variations [21]. Similar rules apply in other coun-

tries. For example, in Britain the switch to a standard atmospheric

assumption occurs at 3,000 ft.

one flight level used by air traffic control in the United

States [21].8 The geoid undulations are less than alti-

tude variations one would expect to see in an aircraft

due to changing meteorological conditions, which are

quantified in Appendix A.

Section II describes the concept of parallel trans-

port from differential geometry as well as its realiza-

tion through a naturally evolving coordinate system.

The naturally evolving coordinate system allows one to

make as few changes as possible to a flat-Earth dynamic

model to adapt it to a curved Earth. Section III then

discusses the adaptation of flat-Earth dynamic models

to a curved Earth. Section IV describes the ellipsoidal

approximation to the shape of the Earth, and a full algo-

rithm for the ellipsoidal approximation is given in Sub-

section IV-D. The validity of the algorithm is demon-

strated through simulation in Section V, and the results

are summarized in Section VI.

II. PARALLEL TRANSPORT ON A SURFACE IN 3D
AND NATURALLY EVOLVING COORDINATES

On a flat surface, an individual walking along a

curved path generally perceives oneself as moving and

turning, not that one is still while the rest of the world

moves and rotates. The perception of self-motion means

that, as illustrated in Fig. 1(a), a direction vector in the

local coordinate system that one carries will not rotate

as one moves. That is, while the vector might move

with the observer, for example representing an axis in a

moving local coordinate system, the vector at one time

is always parallel to the vector at a future time. It is

“parallel transported” along the line of motion. Such an

evolution of vectors in the plane can be contrasted, for

example, with the coordinate system given by the Frenet

formulas [15, Ch. 1—5] (the Frenet frame), whereby the

direction of the local coordinate system evolves such

8Aircraft in controlled airspace are allocated flight levels that are

500 ft (¼ 152 m) apart.
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Fig. 2. In (a) and (b), a vector is parallel transported around a triangle in the direction of the arrows on the circle (clockwise) starting from

the lower left corner of the triangle. In (a), the triangle is in a plane and the vector has the same orientation at the beginning of the loop as at

the end. In (b), the vector is pointed in a different direction (in the local tangent plane) after having completed the loop.

that one axis always points in the direction along a

curve of motion. In the Frenet frame, the evolution of

the coordinate system along a curve is determined by

the curvature of a curve, not of the surface of which

the curve might be located. The Darboux frame, on the

other hand, can be viewed as a modified Frenet frame

for a curve on a surface, where one axis of the local

coordinate system follows a curve along the surface and

another axis remains normal to the surface [15, Ch. 4-4].

Figure 1(b) shows an example of how a vector would

evolve under the Darboux frame on a flat surface.

The notion of parallel transporting a coordinate sys-

tem along a curve has been considered in [5], [16], [28],

where in [16] tips for numerically implementing such a

system are provided. The parallel transport frame along

a curve has even been used to describe the local co-

ordinate system of an unmanned aerial vehicle (UAV)

[26]. On the other hand, differential geometry for de-

scribing motion on a curved surface has been applied to

geodetic problems [7]. However, the work of [7] only

considers the problem of simulating targets constrained

to a surface, and does not specifically consider the use

of arbitrary dynamic models.

The notion of parallel transport can be extended

to curved surfaces, just as the Darboux frame is a

curved-surface equivalent to the Frenet frame. Parallel

transport on a curved surface arises naturally as one

would expect that the local coordinate system associated

with a person walking along an arbitrary path on the

surface of the Earth would experience no acceleration in

a plane tangential to the surface of the Earth; the world

does not “rotate” around the person, but the direction

of the “up” vector always stays the same. Figure 2

illustrates how parallel transport on a surface (in this

case, a sphere) depends both on the direction traveled

as well as on the curvature of the surface. In Fig. 2(a), a

vector is shown parallel transported clockwise around a

triangle, remaining parallel at all times; whereas in Fig.

2(b), a vector is parallel transported counterclockwise

around a triangle on a sphere, returning to the starting

point at a different orientation. The topic of parallel

transport is discussed in the following subsection.

A geodesic curve is the locally shortest distance

between two points on a surface.9 When the vector

being parallel transported with a local observer is the

observer’s own velocity vector and the observer follows

a trajectory of constant velocity, the observer follows a

geodesic curve. The concepts of parallel transport and

geodesics are covered formally in detail in [15, Sec. 4-4]

and [25, Ch. 8].

Subsection II-A covers the topic of 2D motion on a

3D surface in a differential geometric framework. The

evolution of the local coordinates of an observer on a

surface is shown to depend on the parameterization of

the surface. The concept of a naturally evolving coordi-

nate system is introduced in Subsection II-B as a means

of describing the evolution of a local coordinate sys-

tem without the need for surface-dependent acceleration

terms in the local observer’s coordinate system.

A. Parallel Transport on a Surface in 3D

Let r be a vector in a global orthogonal (Cartesian)
coordinate system (such as Earth-centered, Earth-fixed)

from the origin to a point on the surface under con-

sideration. In this paper, the point is on the surface of

9The distance is locally shortest, because no minor variations to the

path will make it shorter. However, it is not necessarily the globally

shortest path. For example, two possible geodesic curves can go from

New York to Paris. One goes East and the other goes West. However,

the eastward path is the shorter geodesic. When using an optimization

algorithm to minimize a distance function to find the shortest path, a

geodesic curve is a locally optimal solution.
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Fig. 3. At a particular point on a surface (specified by a position

vector r at two possible points along a curve), one can have a local

coordinate system defined by vectors in the tangent plane, e1 and e2,

and a normal vector n. When moving along a path on a surface, all

of the vectors must change their direction so that the normal to the

surface remains pointing “up.” Whereas the direction of the normal

vector is uniquely defined everywhere, any two orthogonal vectors

in the local tangent plane can be used for e1 and e2. Parallel

transport of the basis vectors, which is the principle behind the

naturally evolving coordinate system, means that there is no

acceleration in the tangent plane as one moves along the curve; that

is, e1 and e2 must rotate to remain in the local tangent plane, but

none of the rotation is about the normal vector (there is no

acceleration in the local tangent plane).

the Earth. Assume that the surface can be parameterized

using Nd parameters denoted by x1, : : : ,xNd . For exam-

ple, if the shape is the reference ellipsoid for the Earth,

Nd is two, even though r is a three-dimensional posi-

tion vector, because any point on an ellipsoid can be

expressed in terms of geodetic latitude Á and longitude

¸. However, such a choice of parameterization is not

unique.

A vector v in the tangent plane to the surface of

a shape can be expressed as a weighted sum of basis

vectors in the tangent plane to the surface. Tangent

vectors are given by derivatives of r with respect to the

parameterization of the surface. Specifically,

v=

NdX
i=1

vsi

eiz}|{
@r

@xi
, (2)

where the vsi are not the elements of v, (which represents

a 3D Cartesian vector), but instead represent weightings

in the tangent space of the surface at a particular point.

They can be considered the “local” coordinates of v as

seen by an observer on the surface. The ith tangential

basis vector is ei. Figure 3 illustrates the position vector

and local basis vectors when considering a trajectory on

the surface of a sphere. The concern of this subsection

is the mathematical description of how vectors in the

local tangent plane evolve over time as one moves on a

surface.

Since v is constrained to a tangent plane to the

Earth’s surface (for example, it could be a heading), the

3D Cartesian direction of v must depend on position.

The total derivative of v with respect to a coordinate xj
parameterizing the location on the surface is

dv

dxj
=

NdX
i=1

@vsi
@xj

ei| {z }
Change of
Components

+

NdX
i=1

vsi

@ei=@xjz }| {
@2r

@xj@xi| {z }
Change of
Basis Vectors

: (3)

In general, the second term in (3) does not need to be

limited to the tangent plane and consequently can be

written as

@ei
@xj

=

NdX
k=1

¡ki,jek +nij , (4)

where ¡ki,j is a Christoffel symbol of the second kind, a

projection (inner product) of @2r=@xj@xi onto the basis

vector @r=@xk,

¡ki,j =
@ei
@xj

¢
μ
ek
kekk

¶
, (5)

where the dot indicates an inner product and nij consists

of any second derivative components that do not lie

in the tangent plane. The two vertical lines denote the

magnitude of the enclosed vector (the l2-norm). Note

that ¡kij = ¡
k
ji.

As long as v remains on the surface, it is always

confined to the tangent plane, suggesting that deriva-

tive components that cannot be expressed in terms of

tangential basis vectors are not necessarily essential to

defining the evolution of the coefficients on the surface.

The covariant derivative is simply the total derivative

with the components nij , which are orthogonal to the

tangent plane, discarded. The covariant derivative is thus

rxjv=
NdX
i=1

@vsi
@xj

ei+

NdX
i=1

NdX
k=1

vsi ¡
k
i,jek: (6)

A zero covariant derivative implies zero acceleration in

the local tangent plane. To use a flat-Earth dynamic

model on a curved Earth, zero tangential acceleration

means that no extra terms need to be added to the flat-

Earth model in adapting it to the curved Earth; only the

basis vectors change.

The notion of parallel transport arises when con-

sidering how a vector changes direction as an object

moves along a curve on the surface. If the instantaneous

velocity vector v of a non-maneuvering object is paral-

lel transported along the surface in the direction of v,

then the object will follow a geodesic curve. In general,

however, v can be any vector (such as acceleration) in

the local coordinate system of the target moving on an

arbitrary path on the surface. Consequently, the concept

of parallel transport shall be described for how v evolves

as an object traverses an arbitrary curve.
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Let the curve on the surface that the target follows be

parameterized by t, which could be time. Consequently,

the x-coordinates parameterizing r on the surface are

functions of t. The covariant derivative of v with respect

to t can be evaluated using the chain rule:

rtv=
NdX
j=1

rxjv
dxj

dt
(7a)

=

NdX
j=1

NdX
i=1

@vsi
@xj

ei
dxj

dt
+

NdX
j=1

NdX
i=1

NdX
k=1

vsi ¡
k
i,jek

dxj

dt
(7b)

=

NdX
i=1

dvsi
dt
ei+

NdX
j=1

NdX
i=1

NdX
k=1

vsi
@ei
@xj

¢
μ
ek
kekk

¶
ek
dxj

dt

(7c)

=

NdX
i=1

dvsi
dt
ei+

NdX
i=1

NdX
k=1

vsi
dei
dt
¢
μ
ek
kekk

¶
ek: (7d)

Parallel transport occurs when the vi terms evolve such

that rtv= 0. If t is time, then the terms dxj=dt are
related to the velocity of the observer in the observer’s

local coordinate system.

The elements ofrtv are in a global Cartesian coordi-
nate system and are thus independent of how the x terms

parameterize r to obtain the tangential basis vectors e.

For the purpose of this discussion, a parameterization

of r is chosen such that the basis vectors in the tan-

gent plane are always orthonormal. It is not necessary

to know how to obtain such a set of basis vectors prac-

tically, only to know that they exist and could be used.

That the magnitudes of the basis vectors remain constant

implies that the derivative of a basis vector with respect

to t must be orthogonal to the basis vector. The time

evolution of the basis vectors as a function of t must

be a rotation lest the magnitudes of the vectors change,

and all basis vectors must experience the same rotation

to remain orthogonal.10 A 3D rotational dynamic model

allows the derivative of a basis vector to be written as

dei
dt
=−£ ei, (8)

where £ denotes the cross product, the direction of −

is the axis of rotation, and the magnitude of − specifies

the rotation rate. (How − is determined for a particular

surface is discussed in Subsection II-B.) Consequently,

when considering a 3D space, if rtv= 03,1, where 03,1

10The ability to express the evolution of the basis vectors as a contin-

uous rotation assumes that there is no bifurcative changes in the basis

vectors that redefine the relative relationship between the vectors. For

example, suddenly changing from a right-handed coordinate system

to a left-handed coordinate system would be a bifucative change in

the relationship between the vectors. A bifurcation would also arise

when crossing the North Pole using normalized ENU coordinates.

is a 3£ 1 vector of zeros, (7d) becomes

03,1 =

NdX
i=1

dvsi
dt
ei+

NdX
i=1

NdX
k=1

vsi (ek ¢ (−£ ei))ek (9a)

=

NdX
i=1

dvsi
dt
ei+

NdX
i=1

NdX
k=1

vsi (− ¢ (ei£ ek))ek, (9b)

where the vector triple product identity a ¢ (b£ c) =
b ¢ (c£ a) is used. Rearranging terms yields

NdX
i=1

dvsi
dt
ei =¡[e1 : : :eNd ]

2664
PNd
i=1 v

s
i ((ei£ e1) ¢−)
...PNd

i=1 v
s
i ((ei£ eNd ) ¢−)

3775 :
(10)

In three dimensions, two tangent vectors are sufficient

to parameterize a surface (Nd = 2). On applying the

identity a£b=¡b£ a, (10) reduces to

e1
dvs1
dt
+ e2

dvs2
dt

=¡[e1 e2]

·¡vs2(e1£ e2) ¢−
vs1(e1£ e2) ¢−

¸
(11a)

=¡(−¡ (− ¢ ei)ei¡ (− ¢ ej)ej)£ v:
(11b)

When assuming that e1 and e2 are mutually orthonor-

mal, the components of dvs=dt can be extracted using

dot products with the basis vectors to get

dvs1
dt
=¡(−£ v) ¢ e1 = v2− ¢ (e1£ e2), (12)

dvs2
dt
=¡(−£ v) ¢ e2 =¡v1− ¢ (e1£ e2): (13)

That is, the local coordinates change according to the

projection of the cross product of the axis of rotation

of the basis vectors onto the local coordinates. The

magnitude of the local coordinates is preserved through

this operation, which can be demonstrated by writing266664
dvs1
dt

dvs2
dt

0

377775=
264 0

0

¡− ¢ (e1£ e2)

375£
264v

s
1

vs2

0

375 , (14)

where, due to the cross product, it can be seen that

the derivative is orthogonal to the component vector.

Since the basis vectors are assumed to maintain unit

magnitude, the vector v maintains a constant magnitude

through parallel transport.

After substituting the derivatives of the local coor-

dinates in (12) and (13) into the total derivative in (3),

the evolution in the direction of v over time is

dv

dt
=¡

2X
i=1

((−£ v) ¢ ei)ei+
2X
i=1

vsi−£ ei (15)

= −£ v| {z }
General

3D Rotation

+v2− ¢ (e1£ e2)e1¡ v1− ¢ (e1£ e2)e2| {z }
Undo Rotation in Tangent Plane

:

(16)
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Thus, as v parallel transports along the surface, the

change in the direction of v depends only on how the

normal vector to the tangent plane changes, not on how

the bases are rotated within the tangent plane. If the

orientation of the tangent plane does not change, any

rotation of the bases does not matter; v does not change.

The irrelevance of rotations outside of the local tangent

plane means that the rotation vector − to describe the

evolution of the orientation of the tangent plane is not

unique.

B. Naturally Evolving Coordinates

If the vector v being parallel transported in (16) is,

for example, a velocity vector, then the local coordi-

nates must evolve according to (12) and (13). However,

forcing the local coordinates to evolve depending on the

motion on the surface can be inconvenient if one wishes

to use more than a straight-line dynamic model. It is

more convenient if the local coordinates never changes

as the target moves.

The vector v does not need to be a velocity vector.

For example, it could represent an axis (a basis vector)

in the coordinate system of the local observer moving on

the surface. If motion along the surface does not induce

any change in the components of v (any basis vector)

in the local coordinate system of the target, v1 and v2,

then the target does experience any local acceleration

beyond that induced by the flat-Earth dynamic model.

Examining (14), v1 and v2 remain constant if the axis

of rotation is orthogonal to the local normal vector (if

there is no rotation in the local tangent plane). When the

basis vectors parameterizing r, e1, and e2, are chosen to

have zero rotation in the local tangent plane, then (16)

implies that
dv

dt
=−£ v: (17)

The elimination of the extra terms in (16) to obtain (17)

means that the basis vectors in which the coordinates

of r are expressed depend on the path taken by the ob-

ject. Such a path-dependent local coordinate system is

defined to be “naturally evolving coordinates.” The set

of local tangent-plane basis vectors for natural coordi-

nates are designated as u1 and u2 to differentiate them

from the vectors parameterization of the surface that

have thus been expressed as ek.

Let g be a vector orthogonal to the local tangent

plane that defines the local “downward” direction on

the two-dimensional surface. The down vector g is not

necessarily a unit vector and could be acceleration due

to gravity. To define a right-handed local coordinate

system in terms of three orthonormal basis vectors, let

u3 be a unit vector defining the local vertical, which is

expressed in terms of g as

u3 =¡
g

kgk : (18)

In other words, the unit “up” vector is the negative of

the “down” vector divided by its magnitude. To com-

plete a right-handed coordinate system, the remaining

orthogonal unit vectors u1 and u2 in the local tangent

plane must satisfy the defining cross product relations

u1£u3 =¡u2 u1£u2 = u3 u2£u3 = u1: (19)
One coordinate system that satisfies all of these relations

is a local East-North-Up (ENU) coordinate system. One

would like to have vectors that are parallel transported

with a moving target naturally evolve. Though an ENU

coordinate system can be used to define a target’s initial

local coordinate system, it does not naturally evolve

as a target moves. Natural evolution of a vector is

synonymous with parallel transport reducing to (17) and

the basis vectors evolving with no rotation in the tangent

plane.

Expressions for how the orthonormal basis vectors

u1, u2, and u3 evolve over time as a target moves shall

be derived. The derivative of (18) with respect to time

t is

_u3 =¡
_g

kgk +
g

kgk3 ( _g ¢ g) =−£u3, (20)

where the dot indicates differentiation with respect to

t. The simplification to a cross product expression is

possible, because the derivative must be orthogonal to

the vector, lest the magnitude of the basis vector change.

An infinite number of solutions for the rotation vector

− exist. For the naturally evolving coordinate system,

the vector − is constrained to the local tangent plane

(so that u3 has no rotational components in the local

tangent plane):

− = c1u1 + c2u2: (21)

Consequently,

_u3 = (c1u1 + c2u2)£u3: (22)

Using (19), _u3 becomes

_u3 =

Az }| {
[¡u2 u1]

·
c1

c2

¸
: (23)

Equation (23) is an overdetermined system for which a

unique solution should exist. Thus, the coefficients c1
and c2 can be found using·

c1

c2

¸
=A†

μ
¡ _g

kgk +
g

kgk3 ( _g ¢ g)
¶
, (24)

where the † operator represents the matrix pseudoin-

verse. The matrix pseudoinverse A† can be evaluated

using pinv in Matlab, which is based on a singular value
decomposition technique for stability. A similar matrix

pseudoinverse algorithm is described in [24, Ch. 5] and

[23]. A simpler but less numerically robust alternative

is just to use A† = (ATA)¡1AT, where, as described in
[23], the possible numerical instability arises when the

matrix ATA is nearly singular.
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To evaluate (24) to get − in (21), one must know _g,
which is given by

_g=

·
@g

@r1

@g

@r2

@g

@r3

¸
_r, (25)

where r= [r1,r2,r3]
0 are in global Cartesian coordinates

and 0 denotes the transpose operator. The partial deriva-
tives in (25), which are constrained to the surface, can

be written using the chain rule

@g

@ri
=

2X
j=1

@g

@xj

@xj

@ri
, (26)

where the xj are the terms parameterizing r on the sur-
face. However, the evaluation of the partial derivatives

in (26) can be problematic, because the parameteriza-

tion of the surface can have singularities. For example,

when using ENU coordinates, singularities exist at the

poles, because longitude does not have any meaning

at the poles. Such singularities can be avoided either

by obtaining a closed-form solution for the product of

the partial derivatives, which is difficult, or by using

a numerical differentiation algorithm. Section IV-C de-

scribes how, following the technique of [78], an explicit

solution for − can be found when using an ellipsoidal

Earth model.

In summary, the naturally evolving local coordinate

system of a target moving on a surface is defined as an

orthonormal coordinate system at an initial point on the

surface with axes given by the unit vectors u1, u2, and
u3. For example, one might use the ENU axes described
in Section IV when on an ellipsoidal Earth. Then, the

axes evolve according to

_ui = −£ui,, (27)

where − is given by (21) and (24) (or for an ellipsoidal

Earth model from Section IV-C), which depend on the

derivative of the local “down vector” g in (25). Each
component of the partial derivatives can be evaluated us-

ing (26), which must be simplified to avoid singularities,

or using numerical differentiation to avoid singularities.

Techniques for numerical differentiation, besides simple

differencing of two points, are derived using Taylor se-

ries expansions [6, Ch. 4.1]. As described in [80], finite

difference formulae with 2N ¡ 1 points can be automat-
ically generated in Mathematica.

III. APPLYING NATURALLY EVOLVING
COORDINATES TO 2D AND 3D DYNAMIC
MODELS

Let vlocal = [vl1,v
l
2,v

l
3]
T be a vector in the local co-

ordinate system of the target, for example, velocity or

acceleration. A vector vglobal, which is vlocal as seen

in the global observer’s coordinate system, can be ex-

pressed as

vglobal =

3X
i=1

vliui: (28)

Let x
g
t and x

l
t be the state vectors of the target in the

global (curved-Earth) and local (flat-Earth) coordinate

systems at time t, respectively. A noise-free flat-Earth

dynamic model is generally expressed in terms of a

differential equation,

_xlt = a
l(xlt, t), (29)

where _xlt is the derivative of the local state with respect

to time and al is a possibly time-variant function of xlt
known as the drift.

It is assumed that the local dynamic model under

consideration obtains the position component of the

model by integrating a velocity component of the state.

The rest of the dynamic model is arbitrary, but is

assumed to be independent of position. Consequently,

xlt and a
l have the forms

xlt =

264 rlt
_rlt

xl,restt

375 al(xlt, t) =

· _rlt

al,rest( _rlt,x
l,rest
t , t)

¸
, (30)

where rlt is the position of the target in its local coor-

dinate system at time t, _rlt is the velocity of the target

in its local coordinate system, and the vector xl,restt is an

arbitrary collection of additional state elements.

The simplest approach for adapting (29) to a global,

curved-Earth model is to use a mixed state, where the

flat-Earth position rlt is replaced by the curved-Earth

position r
g
t . The mixed state x

m
t with associated dynamic

model is thus

xmt =

264 r
g
t

_rlt

xl,restt

375 _xmt = a
m(xmt , t), (31)

where

am(xmt , t) =

·
_r
g
t

al,rest( _rlt,x
l,rest
t , t)

¸
: (32)

Since the global velocity can be linked to the local

velocity using (28), (32) can be rewritten as

am(xmt , t) =

·
[u1 u2 u3]_r

l
t

al,rest( _rlt,x
l,rest
t , t)

¸
: (33)

If in the target’s local coordinate system the target

experiences no vertical motion (the velocity components

multiplying u3 in (33) are always zero), then the target

can be viewed as remaining at a constant altitude and,

ignoring air pressure, would be expected to follow a sur-

face of constant gravitational potential. Thus, the basis

vectors should evolve “naturally” as in (27), because the

effects of the surface curvature enter the dynamic equa-

tions only through a rotation in the local bases, not by

changing the local states, and the target is constrained

to the surface.

On the other hand, suppose that _rlt has a nonzero

component in the u3 direction. The target no longer re-

mains at a constant gravitational potential, since it is
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Fig. 4. The Earth is approximately shaped like an oblate spheroid; that is an ellipse rotated about the z axis (a type of ellipsoid). The

non-spheroidal nature of the Earth’s shape has been exaggerated in the diagrams. The horizontal lines in (a) represent lines of latitude;

vertical lines represent lines of longitude. Longitude is an angle measured with respect to the x-axis in the xy plane. The DoD’s WGS-84

standard [13] and IERS conventions [58], among many other sources, define reference ellipsoids for the Earth. In (b), a is the semi-major

axis (equatorial radius), and b is the semi-minor axis (polar radius).

ascending or descending along the local vertical. The

local surface of constant gravitational potential should

be what defines the local tangent plane. However, g
changes orientation as one moves vertically. The change

of direction of g with motion in the direction of g is

known in geodesy as the “curvature of the plumb line”

[29, Ch. 2.3]. Curvature of the plumb line implies that

the parallel transport equations of Section II must be

rederived to determine the “straightest” path when mov-

ing in an arbitrary direction through a field where the

local coordinate system rotates everywhere. However,

when using the ellipsoidal Earth approximation of Sec-

tion IV, the plumb line does not curve.

In an ENU coordinate system, moving up does not

change the direction of what is considered to be up. In

this instance, if one uses (27) in Section II-B to predict

forward the axes of the local coordinate system, u1 and

u2 always remain in the local tangent plane, and the
projection of a straight-line motion target onto the ref-

erence ellipsoid follows a geodesic. Consequently, the

suggested technique for handling 3D flat-Earth dynamic

models on a curved Earth under an ellipsoidal approx-

imation is to make g the negative of the normal vector
of the closest point on the reference ellipsoid.

IV. THE ELLIPSOIDAL APPROXIMATION SOLUTION

A. The Gravitational Potential and the Reference
Ellipsoid

The Earth is approximately oblate spheroidal in

shape (an ellipsoidal shape), as illustrated in Fig. 4.

However, the shape of the Earth as defined by the geoid,

a hypothetical surface of equal gravitational potential

defining mean sea level (MSL), is only approximately

ellipsoidal.

The global coordinate system used by the U.S. DoD

is the WGS-84 standard [13]. The latest version of

WGS-84 [51] agrees with the alignment and location

of the axes in the ITRF2008, the latest version of the

International Terrestrial Reference Frame (ITRF). The

ITRF is set by the International Earth Rotation and

Reference Systems Service (IERS) [13], [51] and is

described in the IERS conventions in [58]. Parameters

for the ITRF can be downloaded from [67]. The x-

axis of the ITRF points in the direction of the IERS

reference meridian, which is the same as the prime

meridian, zero degrees longitude, which passes through

Greenwich, England. The z-axis points in the direction

of the IERS reference pole, which is the geographic

North Pole, and is approximately the rotational axis

of the Earth. Differences between WGS-84 and ITRF

arise from differences in points of reference used to

implement the standards, as discussed in [29, Ch. 2.11],

and are due to the WGS-84 standard using a different

semi-major radius for the reference ellipsoid.

The WGS-84 standard defines a reference ellipsoid

for the shape of the Earth, which is derived from param-

eters for the Earth’s gravitational field and is a low-order

approximation of the geoid. Table II lists the param-

eters for the reference ellipsoid, and Fig. 4(b) shows

how the parameters relate to the ellipse of revolution.

The flattening factor is related to the semi-major (a)

and semi-minor (b) axes through the equation

f =
a¡ b
a
: (34)

The reference ellipsoid can be directly related to an

approximation of the gravitational potential including

the effects of the Earth’s rotation, ignoring the direction-

dependent Coriolis effect (see [29, Ch. 2.7]).
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Fig. 5. An illustration of how latitude is measured for a point an

altitude h above the reference ellipsoid. Unless specified otherwise,

the term latitude generally means the geodetic latitude Á, which is

taken with respect to a normal to the reference ellipsoid. On the

other hand, the geocentric latitude Ác, which is seldom used, is the

angle measured with respect to the origin. The horizontal axis is

anywhere in the xy plane, which comes out of the page in the

diagram.

TABLE II

Defining parameters of the reference ellipsoid in the WGS-84

standard [13]. The presence of GM and ! allow one to reconstruct

the gravitational potential of the equipotenial surface implied by the

ellipsoid, as derived in [29, Ch. 2.7].

Quantity Symbol Value

Gravitational Constant

times Earth’s Mass

(with atmosphere) GM 3:986004418£ 1014(m3=s2)
Earth’s Semi-Major Axis a 6378137.0 m

Earth’s Inverse Flattening

Factor 1=f 298.257223563

Nominal Angular Velocity

of Earth’s Rotation ! 7:2921150£ 10¡5(rad=s)

B. Coordinates on the Reference Ellipsoid

Geodetic and geocentric latitudes are angles mea-

sured with respect to the equatorial plane. The geocen-

tric latitude Ác of a point is the angle formed between

the equatorial plane and a line from the center of the

Earth to the point. The geodetic latitude Á is the an-

gle formed between the equatorial plane and a normal

to the reference ellipsoid that passes through the point.

Figure 5 illustrates the difference between geocentric

and geodetic latitudes. Unless otherwise specified, maps

generally show geodetic latitude. On the other hand, if

one draws a line from the coordinate origin to a point

and projects the line onto the xy (equatorial) plane, the

angle the line forms with the x-axis (the prime meridian)

is the longitude ¸. Geocentric latitude and longitude are

equivalent to elevation and azimuth in a spherical coor-

dinate system.

When using the ellipsoidal gravitational model, the

normal to the reference ellipsoid coincides with the ver-

tical direction defined by the negative of the acceleration

due to gravity. That is, “up” is in the direction of r̃ in

Fig. 5. Latitude, longitude, and altitude (height) form

an orthogonal set of coordinates. Thus, a set of basis

vectors derived from local ellipsoidal coordinates can

be used to define u1, u2, and u3 initially, but not over
time. Rather, the basis vectors must evolve as discussed

in Section II-B.

A target’s position is given in Earth-Centered, Earth-

Fixed (ECEF) coordinates in terms of a vector taken

from the center of the Earth, such as r in Fig. 5.

Such a position can be converted into geodetic latitude,

longitude, and height coordinates (Á,¸,h) using the

formulae of [66], which are summarized in Appendix

B. Figure 5 shows a point above the reference ellipsoid

with its height h measured with respect to the normal to

the reference ellipsoid. The conversion of a point given

in geodetic latitude, longitude, and height coordinates

(Á,¸,h) to ECEF Cartesian coordinates can be done as

x= (Ne+ h)cos(Á)cos(¸) (35)

y = (Ne+ h)cos(Á)sin(¸) (36)

z = (Ne(1¡ e2)+ h)sin(Á) (37)

Ne =
ap

1¡ e2(sin(Á))2 , (38)

where the first numerical eccentricity of the ellipsoid

is e,

e
¢
=
p
2f¡f2, (39)

and Ne is the normal radius of curvature [29, Ch. 5.6],

also known as the radius of curvature in the prime

vertical.

A set of local orthogonal basis vectors obtained by

differentiating (35), (36), and (37) with respect to Á, ¸,

and h are

dr

d¸
= c1u1 =

264¡(Ne+ h)cos(Á) sin(¸)(Ne+ h)cos(Á)cos(¸)

0

375 (40)

dr

dÁ
= c2u2 =

26666664

μ
cos(Á)

dNe
dÁ

¡ (Ne+ h) sin(Á)
¶
cos(¸)μ

cos(Á)
dNe
dÁ

¡ (Ne+ h)sin(Á)
¶
sin(¸)

(Ne(1¡ e2)+ h)cos(Á)+ (1¡ e2)
dNe
dÁ

sin(Á)

37777775
(41)

dr

dh
= u3 =

264cos(Á)cos(¸)cos(Á) sin(¸)

sin(Á)

375 , (42)

where
dNe
dÁ

=
ae2 cos(Á)sin(Á)

(1¡ e2(sin(Á))2)3=2 : (43)

The constants c1 and c2 in (41) and (40) represent the

fact that the vectors do not have unit magnitudes. It can

be verified that the vectors form an orthogonal basis.

This basis is ENU, because dr=dh points up, dr=dÁ
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points in the direction of geographic North along the

surface of the ellipse, and dr=d¸ points East along

the surface of the ellipse. The ENU coordinate system

refers to the normalized forms of the bases in (40)

through (42).

Since (40) has zero magnitude at the poles, but (41)

and (42) have nonzero magnitudes, u1 is defined by

u1 = u2£u3 (44)

to guarantee that it always exists. The longitude ¸

determines the orientation of the North and East axes

at the poles.

C. Computing the Tangent Plane Rotation Vector

In the case of an ellipsoidal Earth model, the rotation

vector − needed to propagate naturally evolving coordi-

nates in Section II-B can be found directly as is done as

an intermediate step in propagating wander coordinates

in [50, Pgs. 54—56]. The instantaneous turn rate ! of

an object that is rotating about an axis is equal to the

speed of the object divided by the radius of the object

from the axis. Here, we wish to find the instantaneous

turn rate of an observer moving above an ellipsoidal

Earth. Under an ellipsoidal approximation, the Earth has

a different radius of curvature going North than going

East. In [61, Sec. 3.5], the different radii of curvature

of an ellipsoid are derived in detail. The radius of cur-

vature in the prime vertical, which is the one relevant

for North-South motion, is given by Ne in (38). The

radius of curvature in the meridian, which is relevant to

East-West motion, is given by

Me =Ne
1¡ e2

1¡ e2 sin(Á)2 (45)

Given a global velocity vector of a target expressed

in terms of local East, North, and Up coordinates

v= vEastuEast + vNorthuNorth + vUpuUp (46)

the instantaneous (right-handed) turn rate about the

local East axis (which is needed to correct for North-

south motion) is

!East =
¡vNorth
Me+h

(47)

where h is the height of the target above the reference

ellipsoid. Similarly, the instantaneous rotation rate about

the local North-axis, which is needed to correct for

(East-West motion) is

!North =
vEast
Ne+ h

(48)

Thus, the total rotation vector needed to propagate

naturally evolving coordinates is

− = !EastuEast +!NorthuNorth (49)

As the velocity vector v will be parameterized in terms

of the naturally evolving basis vectors

v= vs1u1 + v
s
2u2 + v

s
3u3 (50)

the local East North and Up components necessary to

use (49) can be found using dot products:

vEast = v
0uEast (51)

vNorth = v
0uNorth (52)

vUp = v
0uUp (53)

On the surface of the reference ellipsoid, the naturally

evolving coordinate system coincides with the wander

coordinate system of navigation.

On the other hand, in Section V, to compare with

continuous-time extensions of the algorithms of [43],

[81], which rotate a local East-North-Up coordinate

system rather than using naturally evolving coordinates.

In such a coordinate system, u1 = uEast, u2 = uNorth, and

u3 = uUp and (33) can be used to propagate the state

without an explicit differential equation for the basis

vectors, because Subsection IV-B provides formulae for

the East, North, and Up vectors all over the globe.

D. Constructing the Full Propagation Algorithm

Figure 6 consolidates the concepts in the previous

sections to summarize the state propagation algorithm

for fitting a flat-Earth dynamic model to a curved Earth

under an ellipsoidal gravitational approximation. The

Runge-Kutta algorithm, a standard technique for solv-

ing deterministic differential equations, is described in

[6, Ch. 5.4, 5.5] as well as in the tutorial [9], and an

adaptive function is built into Matlab under the name

ode45.

V. DEMONSTRATING THE ALGORITHMS THROUGH
SIMULATION

The validity of the method of adapting a flat-Earth

dynamic model to a curved Earth causes the path of a

constant-velocity flat-Earth motion model to follow the

same geodesic curve that is obtained using established

techniques given the same initial heading. Given a target

state of xt = [r
0
t, _r

0
t]
0, where rt is the Cartesian position

as a function of time and _rt is the Cartesian velocity

vector, the drift term for constant-velocity, flat-Earth

state propagation is

al(xt, t) =

·
_rlt

03,1

¸
: (54)

Using the notation of Section III, (54) implies that

al,rest( _rlt,x
l,rest
t , t) = 03,1.

Given two points on the surface of the Earth (height

h in ellipsoidal coordinates is zero) whose longitudes

neither coincide nor are 180± apart, the geodesic al-
gorithm of [57] provides latitude and longitude pairs

along a geodesic curve connecting the points, along with

a derivative of latitude with respect to longitude. That

derivative can be transformed into an initial heading for

a geodesic curve that would connect those points. Such

a heading is generally expressed as radians or degrees

North of East. North and East define the local tangent
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Fig. 6. The steps for predicting forward a flat-Earth dynamic model on a curved Earth when using an ellipse of revolution approximation

for the gravitational shape of the Earth. r
g
t is the target position in the global (curved-Earth) coordinate system; _r

l
t is the target velocity in the

flat Earth dynamic model and xl,restt are other state components in the flat-Earth dynamic model. uNorth is obtained by dividing the quantity

on the right by its magnitude. al,rest is the function providing derivatives of the velocity and other state components in the flat-Earth dynamic

model. The simplest initial set of basis vectors is u2,t0
= dr

dÁ
=
°° dr
dÁ

°° (North), u3,t0 = dr
dh
=
°° dr
dh

°° (Up), and u1,t0 = u2,t0 £u3,t0 (East), using the
expressions of Section IV-B.

plane in the ENU coordinate system, and an angle North

of East is an angle measured from the East axis in the

direction of the North axis. By initializing the local co-

ordinate axes u1, u2, and u3 at time 0 to be ENU, then
if μ is the initial bearing provided by the algorithm of

[57], the corresponding initial local (flat-Earth) velocity

vector is11

_rlt = v

264cos(μ)sin(μ)

0

375 , (55)

where the speed v = k _rltk can be set arbitrarily and
determines how long it takes to travel between the

points.

When using the algorithm in Fig. 6, the speed and

number of steps needed for the Runge-Kutta algorithm

to propagate the state a certain distance are related

through the time duration of the step size. If the geodesic

distance between the points on the surface of the Earth

provided by the algorithm of [57] is s, and one wishes

to use Nsteps of time duration ¢t for the Runge-Kutta

method to integrate from the starting point to the desired

ending point, then

k _rltk= v =
s

Nsteps¢t
(56)

is the speed needed for the target state.

11The algorithm of [35] and [34] is more robust than [57], but does

not directly provide the latitude versus longitude of the curve to plot.

The thick, green line in Fig. 7(a) is the geodesic

curve on the surface of the Earth between the Mauna

Kea Observatory in Hilo, Hawaii, which is located at

approximately ¡155:470± East longitude and 19:823±
North latitude [55, Sec. J], and Neuschwanstein Cas-

tle in Füssen, Germany, which, according to Google

Maps,12 is approximately located at 47:5575± latitude
and 10:7500± longitude. The geodesic curve (which
assumes a constant zero altitude above the reference

ellipsoid) is determined using the algorithm of [57].

When the algorithm of Fig. 6 is used with a constant-

velocity motion model propagated for the same distance

(approximately 12,416 km) and the same heading as

that determined by the algorithm of [57], the results

differ by 0.0276 cm (1,000 Runge-Kutta steps spaced

one second apart were used for the propagation). In

Fig. 7(b), the geodesic trajectory under consideration

goes from the Mauna Kea Observatory to New York

City, which according to Google Earth is located at

approximately 40:67± latitude and ¡73:94± longitude.
Again, the difference between the stopping point of the

geodetic estimation algorithm and the propagation al-

gorithm of Fig. 6 is 0.00727 cm after a travel distance

of 7,903 km.

12Note that although Google Maps can be used to get approximate po-

sitions, its maps use the “web Mercator projection,” which can result

in positional biases to be as high as 40 km in some areas compared

to a correct WGS-84-coordinates [53].
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Fig. 7. In (a) and (b), the thicker, green curve is a geodesic curve from Hilo, Hawaii to Füssen, Germany in (a) and to New York City in

(b). At the scale shown, the geodesic curve, which is determined using the algorithm of [57], is indistinguishable from the prediction of a

flat-Earth constant-velocity motion model applied to the spheroidal Earth when initialized with the same bearing. The red curve in (a) and

(b) is a curve of constant bearing starting with the same bearing as the geodesic curve. That is the curve that the algorithms of [43], [81]

mapping a non-maneuvering flat-Earth model to a curved Earth would follow. The curve gets stuck at the North Pole in (a) and deviates

greatly North in (b). In (c), a curve of constant bearing heading 5± North of East starting in Antarctica is shown and clearly does not follow
a geodesic path. The globe image is derived from an equirectangular projection provided by Visible Earth, which is run by the EOS Project

Science Office at the NASA Godard Space Flight Center. Full credits for the image are at [68], [71]. The projection is re-mapped to a

spherical Earth using the code of [44] (though the code is labeled for a Mercator projection, it actually uses an equirectangular projection),

with minor modifications to use the WGS-84 ellipsoid. The images were made in Matlab and touched-up in Gimp, since Matlab tends to

render three-dimensional lines in a broken, jagged manner.

The primary source of the small difference in the

estimates between the traditional geodetic algorithm of

[57] and the algorithm of Fig. 6 appears to stem from

numerical precision errors that accumulate over the in-

tegration period. For example, after converting the loca-

tion of Hilo to Cartesian coordinates using the formulae

of Section IV-B and then back to ellipsoidal coordinates

using the formulae of Appendix B, the heights differ by

9:3£ 10¡10 m and the latitudes differ by 4:2£ 10¡11
degrees. In comparison, the ratio of the error of the fi-

nal Cartesian location to the distance traveled for the

algorithm of Fig. 6 is 2:2£ 10¡11 for the trajectory to
Neuschwanstein and 9:1£ 10¡12 for the path to New
York. Consequently, the algorithm in this paper, which

is implemented using double-precision arithmetic un-

der a constant-velocity motion model, agrees with the

geodesic algorithm of Appendix B to a reasonable pre-

cision.

The solid red lines in Fig. 7 are constant-bearing tra-

jectories. Using the tracking techniques of [43] and [81],

a target under a constant-velocity motion model propa-

gated forward in time would follow a constant-bearing

trajectory. Similarly, for purposes of trajectory genera-

tion, one might consider using a constant-bearing tra-

jectory on a curved Earth. In Figures 7(a) and 7(b), the

initial bearing matches that of the geodesic. However,

it is clear that the constant-bearing trajectories deviate

greatly from the geodesic path, because following a con-

stant heading in a local ENU coordinate system always

deviates toward the poles, except when following lines

of constant latitude. In Fig. 7(c) a track maintaining a

constant-bearing trajectory is started at a low angle of 5±

North of East at a latitude of Á=¡89±, a longitude of
¸= 0±, and a height of 0 m, which places it somewhere
in Antarctica. The resulting rhumb line is observed to

spiral greatly going up the globe, and is clearly not a

geodesic curve. In other words, constant-bearing trajec-

tories are not suitable for modeling non-maneuvering

target motion near the poles or over long distances.

Next, the algorithm in this paper is considered for

mapping a maneuvering target state to a curved Earth.

Three models representing well-known maneuvers are

chosen. The first model is a level coordinated turn

model, as described in Appendix C. The second is a

weaving motion model derived in Appendix D, and

the third is a spiraling motion model, as derived in

Appendix E. Appendices D and E also describe how

to make the flat-Earth weaving and spiraling models

travel a certain distance in a desired direction, since

those designing simulations will generally want to know

how to make a target go from one desired location

on the Earth to another. It will be shown that while

the algorithm derived in this paper correctly keeps the

targets from flying off into space, the curvature of the

Earth induces a slight drift in the trajectories in the

local tangent plane compared to a geodesic starting in

the same direction when adapting flat-Earth navigation

methods to a curved Earth. Nonetheless, the flat-Earth

equations for the overall trajectory to have a particular

offset along an initial bearing as given in the appendices

are good approximations to the curved-Earth result.

For the coordinated turn model, an example of an

aircraft circling the Mauna Loa Volcano in Hawaii is

considered. The Mauna Loa volcano is located at a

44 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 10, NO. 1 JUNE 2015



Fig. 8. The trajectory of a coordinated-turning plane around Hawaii as found using the algorithm of Fig. 6 is plotted in (a). At this angle

and scale, the flat-Earth approximation would appear to be the same. Using the algorithm of Fig. 6, the target only differs from its starting

altitude by 2.8 nm at the end due to numerical precision errors. On the other hand, using the flat-Earth model, the plane ends 1.13 km too

high, as illustrated in (b), where the green line is the correct curved-Earth model and the blue-line is a flat-Earth approximation centered at

the start of the target trajectory. The land image is again from Visible Earth [68], [72] and the image’s contrast was increased to make the

land more visible. The land image was displayed in Matlab using the imread and imagesc commands. To save the resulting plot while
preventing Matlab from rendering the trajectory and axes as (pixellated) bitmaps, the trajectory and axes were saved separately from the land

in encapsulated postscript (EPS) format, which is a format that supports vector graphics. The axes and trajectory were then combined with

the plotted land image using PowerPoint, and the mixed vector/bitmap image was exported in portable document format (PDF). Had

everything been plotted together, Matlab would have rasterized the vector graphics, even when saved in EPS format, causing the axes either

to be very pixellated or the file size to be excessively large.

latitude of 19:475±, a longitude of ¡155:608± and is
4,170 m high [76]. The aircraft circling the volcano

starts at a location 60 km along a geodesic East of the

volcano (19:4741± latitude,¡155:0365± longitude) at a
heading of due North and an altitude of 10 km.13

To circle the volcano under a flat-Earth model, the

radius of rotation r in Appendix C, should be approx-

imately 60 km. The radius of rotation and the target

speed are related by

k _rlk= v = r!, (57)

where ! is the turn rate parameter in the coordinated

turn model. Assuming that v = 193 m/s, which is a rea-

sonable speed for a chartered private jet touring the is-

land, as it is approximately the maximum cruise speed

of an Eclipse 550 [17], the corresponding turn rate is

approximately 0:184301±=s. The turn rate is only ap-
proximate when mapped to a curved surface, because

Euclidean geometry is no longer valid and the time to go

in a complete circle mapped to the surface of the ellip-

soidal Earth is not necessarily 360± divided by the turn
rate. Nonetheless, the flat-Earth (Euclidean) geometric

approximation for the travel time is a reasonable ap-

13The location a desired distance along a geodesic East of the volcano

can be found in the same way that the geodesic curves for Fig. 7 are

evaluated. In this instance, the initial point is the volcano location, but

set to zero altitude. One establishes an initial set of axes as an ENU

coordinate system, and the initial local velocity is in the positive x

direction. The algorithm in Fig. 6 is then used to travel at an arbitrary

speed until the desired distance is traversed.

proximation. Under Euclidean geometry, it would take

about 33 minutes to circle the volcano.

If the aircraft is initially heading due North, at a

constant speed for 16 minutes, the trajectory computed

by the algorithm of Fig. 6 is plotted in Fig. 8 as a

function of latitude and longitude using Nsteps = 1,000

Runge-Kutta steps of duration ¢t = 160 ms. This tra-

jectory maintains a constant altitude above the ground

to within 2.8 nm at the final point in the trajectory (due

to numerical precision errors). On the other hand, when

using a flat-Earth coordinated turn model centered at

the starting point14 as described in Appendix C, the

final target location is 1.13 km too high, with a total

Cartesian offset of 1.15 km.

The second model under consideration is the weav-

ing motion model of Appendix D. A target might travel

in a weaving or other erratic manner over long distances

to avoid detection while approaching a strategic destina-

tion. Here, two flat-Earth weaving models are mapped

to the curved Earth. In the first model, the target weaves

within the local tangent plane (xy plane) and should

maintain a constant altitude above the ground. In the

second model, the target performs weaves in the local

vertical direction, and the weaves should not drift up-

ward or downward over time.

14The use of a local level coordinate system for putting flat-Earth

models at any point on the Earth is described in [84, Ch. 3.2.2.7],

where the flat-Earth model is placed on the local tangent plane of the

starting point.
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When using the weaving motion model of Appendix

D, a target is considered flying a weaving trajectory

at an altitude of 10 km from Mauna Loa to Honolulu

(21:3000± latitude, ¸=¡157:8167± longitude), accord-
ing to Google Maps. The target’s speed is set to 680 m/s,

which is approximately Mach 2 and might just be attain-

able by the MiG in Table I. The relative amplitude of

the weave is ¯ = 0:5 with an initial phase of μ0 = 0 start-

ing from time t= 0. The target performs Nw = 6 weaves

along the path.

The geodesic distance from Mauna Loa to Honolulu

is determined using the algorithm of [57] and is approx-

imately s¼ 306:552 km. With the given weave parame-
ters over this distance, Appendix D specifies the maxi-

mum acceleration felt by the pilot, ignoring gravity. Us-

ing the maximum gravity-free acceleration coupled with

the G-force equations of Appendix C-B that account for

gravity, the maneuver in the local tangent plane corre-

sponds to maximum 4.2 G (load factor) turns. When

the maneuver is in the vertical plane using the max-

imum acceleration of the turn with the maximum G-

force equation of a vertical turn in Appendix C-B, one

obtains an upper bound on the G-force felt by the pilot

of 5.2 G. Both of those bounds are well within the struc-

tural limits of the aircraft listed in Table I, highlighting

the realism of the maneuver.

The duration of the maneuver to travel the geodesic

distance between Mauna Loa and Honolulu is deter-

mined using the method of Appendix D-B and is found

to be approximately 529 s. However, when the target

maintains an altitude of 10 km, it will stop short of the

destination–the indirect geodetic problem solved with

[57] is only valid for paths on the surface of the Earth.

At higher altitudes, the target must travel farther to reach

the same latitude and longitude.

To perform weaving motion in the local tangent

plane, the axis of rotation used in the weaving model

(the direction of −t) is the local vertical [0,0,1]
0, the

z-axis. When the weaves are in the local vertical plane,

then the axis of rotation is the normalized cross product

of the initial (level-flight) velocity and the local vertical.

In the simulations, 3500 Runge-Kutta steps were taken,

which corresponds to a duration of approximately ¢t =

151:2 ms per step in (56).

Figures 9(a) and 9(c) show the weaving trajectory

after traveling the ground distance of the geodesic curve

(as computed on the surface of the reference ellipsoid)

for a target at an initial altitude of 10 km using the

algorithm of Fig. 6. In Figures 9(a) and 9(b), the target

weaves in the local tangent plane. At the final point, the

target’s altitude differs from the initial point by approx-

imately 1.86 ¹nm when performing horizontal weaves

and 57 nm when performing vertical weaves, which

one would expect to be entirely due to numerical preci-

sion problems. However, the target’s Cartesian location

at the end differs from the end of the geodesic curve

raised to the same altitude by 481 m when performing

horizontal weaves and 798 m when performing vertical

weaves. This offset in the local tangent plane is pri-

marily because the geodesic curve is computed at zero

altitude whereas the target flies at 10 km altitude, but

also because the flattening factor of the Earth means

that deviations in one direction do not perfectly cancel

by deviation in another.

The third model considered is the spiraling model of

Appendix E. The spiraling model is of interest, because

full physics-based dynamic model derivations, such as

in [73, Sec. 5], often omit expressions for a spiraling

model on a curved Earth as being too difficult. While

the flat-Earth model of Appendix E might not be the

best physical representation of a spiraling target, it is

sufficient to demonstrate the efficacy of the algorithm.

As shown in Figures 9(e) and 9(f), the spiraling model

varies its position in the horizontal and vertical planes,

but does not drift upward.

The same trajectory is chosen for the spiraling model

as for the weaving models, though the initial altitude is

increased to 20 km. The spiraling model is implemented

with 3500 Runge-Kutta steps over a period of T = 600 s.

The angular velocity of the turn component is chosen

to be ! = 2¼Nw=T with Nw = 6 so that there would be 6

spiral cycles over the trajectory. The linear speed of the

spiral track is the distance between the points divided

by the time, which is approximately kvlk= 481 m/s.
The magnitude of the orthogonal velocity causing the

rotation is set to cause the radius of the spiral to be

5 km, which is approximately kvsk= 314 m/s. The total
speed of the target is consequently 574 m/s, which is

less than Mach 2 and is attainable by two of the fighter

jets in Table I. The upper bound on the G-force of the

target as described in Appendix E is approximately 3 G

and is tolerable by all of the aircraft in Table I.

VI. CONCLUSIONS

This paper shows how deterministic flat-Earth dy-

namic models can be used on a curved Earth via a nat-

urally evolving coordinate system. The technique avoids

the highly unrealistic tendency of many other algorithms

to spiral toward the poles. When the target is constrained

to the surface of an arbitrary-shaped Earth, the solu-

tion is exact, assuming that a set of coordinates can

be defined on the surface. Similarly, when the Earth

is approximated as an ellipse of revolution, as in the

WGS-84 standard, then a precise algorithm for simu-

lating targets at arbitrary altitudes is available, because

no curvature of the plumb line exists in the ellipsoidal

model. The moving local coordinate system is equiva-

lent to the wander coordinate system from the inertial

navigation literature. The algorithm of Fig. 6 is a sum-

mary of the technique for use on a reference ellipsoid.

When used with a non-maneuvering motion model, the

algorithm can be used to trace out geodesic curves given

an initial heading without encountering singularities in

any direction or at the poles. Unlike traditional geodesic
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Fig. 9. A target traveling between Mauna Loa and Honolulu. In (a) and (b), the target follows a weaving trajectory in the local tangent

plane; in (c) and (d), the weaving is in the vertical plane, and in (e) and (f) the target spirals. In (a), (c) and (e) the straight red curve is the

geodesic curve; in (c), the geodesic is covered by the trajectory. In (b), (c) and (d) the green trajectory, which does not rise, is the model

correctly accounting for the curvature of the Earth; the blue lines, which rise, are local flat-Earth models centered at the starting point of the

trajectory. It can be seen that ignoring the curvature of the Earth introduces a large bias in altitude. Again, the land image is from Visible

Earth [68], [72].
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algorithms, it can compute geodesic curves at constant

altitudes above the reference ellipsoid.

Through simulation, the algorithm of Fig. 6 is shown

to agree with a traditional technique for determining

geodesic curves when applied to a non-maneuvering,

constant-velocity motion model. The algorithm did not

exhibit a tendency to veer toward the poles, as occurs

when using a constant heading model to adapt tracks

to a curved Earth as is the case when using more tradi-

tional ENU methods. The generality of the algorithm

is demonstrated with coordinated turn, weaving, and

spiraling motion models. The limiting factor in the ap-

proach appears to be the accumulation of numerical pre-

cision errors over time, resulting in small (nanometer)

deviations from the target height.

In addition to presenting a technique for mapping

arbitrary flat-Earth dynamic models for aircraft to a

curved Earth, this paper also analyzes the extent to

which the ellipsoidal Earth approximation is valid when

accounting for the fact that aircraft generally use pres-

sure altitude for navigation purposes. This analysis is in

Appendix A. This paper also derived flat-Earth weaving

and spiraling models in Appendices D and E that do not

appear to exist in the literature. The models were derived

along with methods for determining the G-forces felt by

a pilot and determining how to travel a desired distance

in a particular direction while maneuvering.

The most advanced algorithms for simulating target

dynamics are probably those built into commercial and

military flight simulators, such as the many listed in

Jane’s online database of Simulation and Training Sys-

tems (part of https://janes.ihs.com). However, for sim-

ple design of target tracking algorithms, the cost and

computational resources required for the high-fidelity

models in Janes might not be practicable, which is

probably why such advanced models appear to be ab-

sent from the target tracking literature, where simple,

generic flat-Earth models are commonly used. More-

over, highly precise models often have a large number of

parameters to be estimated, not all of which are observ-

able by a radar (comments on the observability of one

sophisticated model are given in [40]). Consequently,

medium-fidelity dynamic models might be more useful

in many tracking algorithm designs. Thus, the technique

presented in this paper can fall into line with those of

[50], [62] for long-range maneuvering target simula-

tions. However, unlike the methods of [50], [62], the

algorithm of this paper can also simulate targets on non-

ellipsoidal surfaces.

Future work can focus on developing state predic-

tion algorithms that use meteorological data to model

properly the altitude variations experienced by aircraft

navigating using pressure altitude. Similarly, real air-

craft do not fly deterministic trajectories. Ergo, future

work can generalize the technique of this paper to map

stochastic motion models to a curved Earth. Nonethe-

less, deterministic flat-Earth trajectories mapped to a

curved Earth can specify nominal maneuvering trajecto-

ries used by real control systems on aircraft or missiles.
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APPENDIX A. HOW AIR PRESSURE VARIATIONS
AFFECT CIVILIAN AVIATION

Aircraft in controlled airspace normally fly at al-

titudes computed from measuring a local barometric

pressure and comparing it to a reference mean sea level

value. The reference pressure at sea level in controlled

airspace is usually set to the standard pressure of 29.92

inches of mercury [21]. The pressure altitude is nor-

mally determined using a standard atmospheric model.

A number of global and regional standard atmospheric

models are reviewed in [2], not all of which are rele-

vant to aviation.15 For civil aviation, the International

Civil Aviation Organization (ICAO) Standard Atmo-

sphere, the International Standard Atmosphere (ISA),

from the International Organization for Standardization

(ISO), and the U.S. Standard Atmosphere are the most

relevant. As noted in [2], the ISA is identical to the

ICAO standard atmosphere and the World Meteorologi-

cal Organization (WMO) Standard Atmosphere up to an

altitude of 32 km. The development of the U.S. Standard

atmosphere is described in [47], where it is noted that

the U.S. Standard Atmosphere and the ICAO standard

atmosphere are identical up to an altitude of 32 km. The

defining document for the U.S. Standard atmosphere is

[54].16 In the United States, civilian aircraft are limited

to an altitude of 40,000 ft (12,192 m), with a single

exemption for the Airbus A380-800, which can fly up

to 43,000 ft (13,106.4 m) [14].

The U.S. Standard Atmosphere [54] provides equa-

tions relating altitude and pressure within the altitudes

concerning civilian aviation as well as beyond those

bounds. Three equations relating altitude and pressure

are given in the standard. One is for altitudes from

11 km to 20 km and 47 km to 51 km. Another is for

15Additionally, some of the models are for Mars, Neptune, Titan, and

Venus, rather than for the Earth.
16The ICAO standard atmosphere and the ISA are not directly cited,

because the U.S. Standard Atmosphere can be freely downloaded,

whereas the other two standards are rather expensive. For example,

one can purchase the ISA from the ISO at http://www.iso.org/iso/

catalogue detail?csnumber=7472 for 210 Swiss Francs (¼ 230 U.S.
dollars). Since all three standards agree from ground level to 32 km

altitude, the freely available U.S. Standard Atmosphere generally suf-

fices for civilian aviation purposes worldwide.
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altitudes above 85 km, and the third is for all other alti-

tudes, but with different parameters in different regions.

Consequently, two different sets of equations are neces-

sary to describe all altitudes up to 43,000 ft, the max-

imum altitude of a commercial aircraft in the United

States. However, to simplify the analysis here, only the

model from ground level to 11 km (36,089 ft) is con-

sidered.

The relationship between the altitude above mean

sea level z and the atmospheric pressure for altitudes

from ground level to 11 km is

z =
r0h

r0¡h
, (58)

where h is the geopotential altitude given by

h=
T0
L0

Ãμ
P

P0

¶¡L
0
R=g

0
M
0

¡ 1
!

(59)

and

r0 = 6,356,766 m g0 = 9:80665
m

s2
(60)

R = 8314:32
N m

kmol K
M0 = 18:9644

kg

kmol
(61)

P0 = 101,325:0 Pa T0 = 288:15 K (62)

L0 =¡6:5£ 10¡3
K

m
: (63)

The value r0 is the effective radius of the Earth and g0
is the magnitude of the acceleration due to gravity at

sea level, which differ from the more modern values

derived from the WGS-84 standard [13]. The value R

is the ideal gas constant, also known as the molar gas

constant. The value of R in (61) is provided in [54],

which differs slightly from the modern value standard-

ized by the Committee on Data for Science and Tech-

nology (CODATA) in [48]. The quantities M0 and P0
are respectively the mean molecular weight of the at-

mospheric constituents at the surface of the Earth and

the standard atmospheric pressure at sea level. The air

pressure at the surface of the Earth P0 is approximately

equal to 29.92 inches of mercury on a barometer at

the standard temperature TM,0 = 15
±C. Note that many

sources erroneously use the geopotential altitude in (59)

as the true altitude instead of (58).

The relationship between the geopotential altitude h

and the true altitude above sea level z is

h=
1

g0

Z z

0

kgkdz, (64)

where g is the acceleration due to gravity at altitude
z and g0 is the magnitude of the acceleration due to

gravity at mean sea level.17 Equation (59) comes from

17Mean sea level is defined as a surface of constant gravitational po-

tential. Surprisingly, it is not a surface where the magnitude of the

gravitational acceleration kgk is constant. In [29, Ch. 2.9], the magni-
tude of the gravitational acceleration on an ellipsoidal approximation

of the Earth is derived and varies with latitude. Thus, the assumption

that g0 is a single constant everywhere is just an approximation.

using a very simple approximation to the magnitude of

the acceleration due to gravity at height z, specifically,

kgk= g0
μ

r0
r0 + z

¶2
: (65)

In other words, by modern standards, the U.S. Standard

atmosphere is not a high-precision model. However, it

forms the basis of pressure-based altimeters for civilian

aviation and is a good approximation for basic analysis.

To determine how much local pressure variations

can affect the true altitude of an airplane flying ac-

cording to a pressure altitude, an example of an air-

craft flying at a pressure altitude of 7,620 m (25,000 ft)

is considered. Using (58) with the standard parame-

ters shown, the pressure at the aircraft’s altitude is

P = 52,991:6 Pa. The maximum and minimum (ex-

cluding tornadoes) recorded sea-level air pressures are

108,330 Pa and 87,000 Pa [39]. Using P = 52,991:6 Pa

for an aircraft at a constant pressure altitude of 7,620 m,

but varying P0 to both of the extremes, the true alti-

tude varies from 5,953.45 m (19,532 ft) to 8,328.2 m

(27,323 m).

In comparison, in the United States, aircraft are

placed in 500 ft (¼ 152 m) flight levels. A flight level is
the height in feet divided by 100. The use of flight levels

begins at 18,000 ft, corresponding to flight level 180,

denoted FL180. For pilots operating under instrument

flight rules (IFR), which is generally all pilots flying

in flight levels, air traffic controllers space the aircraft

through FL410 a distance of 1,000 ft apart vertically.

That is, they are two flight levels apart. Above FL410,

aircraft are spaced 2,000 ft apart, except for supersonic

and military aircraft [21]. If a pilot sets his altimeter to

use the standard MSL air pressure and the air pressure

is at the record minimum, then the pilot will fly about

10.9 flight levels lower, compared to the ground, than

on a normal day. On the other hand, if the air pressure

is the record high, then the pilot will fly about 4.6 flight

levels too high.

In practice, the extreme low is unrealistically ex-

treme, since it was taken in the middle of Typhoon

Tip in 1979, and generally only research and military

aircraft would knowingly venture into a strong hurri-

cane. A more realistic lower bound for the air pressure

is 98,000 Pa, which is the very bottom of the pressure

range of a category 1 hurricane on the Saffir-Simpson

scale [3], and is the value used as a lower bound on

the atmospheric pressure in [18], where the feasibility

of reducing the minimum vertical separation between

planes (which was larger back then) was studied. In

this instance, the minimum air pressure extreme leads

to an altitude of 7261.4 m (23,823 ft), which is an offset

of 2.4 flight levels. Additionally, when the air pressure

extrapolated to mean sea level in a location is above 31

inches of mercury (¼ 104,966 Pa), air traffic control in
the United States is supposed to instruct pilots to set

their altimeters to use 31 inches of mercury as P0 [21];
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so in many instances the vertical offset due to pressure

changes also spans fewer flight levels.

This variability in altitude of an aircraft traveling at

a constant barometric altitude exceeds the variability in

the height above the reference ellipsoid due to gravita-

tional variations when using an ellipsoidal approxima-

tion of the Earth (Using the data in [52], the reference

ellipsoid differs from mean seal level by up to +84 m

and ¡107 m). Consequently, if one wants more precise
aircraft prediction models on a curved Earth than the

technique presented in this paper, one must consider the

use of meteorological data, not just the use of a more

precise geoid approximation than an ellipsoid.

APPENDIX B. CONVERTING FROM CARTESIAN TO
GEODETIC ELLIPSOIDAL COORDINATES

The conversion from Cartesian (x0,y0,z0) to ellip-

soidal (Á,¸,h) coordinates is a difficult problem. A table

of 80 references addressing the topic is given in [20].

Generally, an explicit, numerically stable solution is the

most desirable. In this appendix, the solution of [66],

which is a stabler form of [65], is reviewed. When using

typical parameters for the Earth’s ellipse, it is noted in

[65] and [66] that this conversion is valid for all points

outside of a small ellipsoid around the center of the

Earth, whose radius is about 43 km. Considering that

no one has ever managed to drill through the 6 km of

crust of the Earth to reach the mantle, though it might

be technically feasible [70], this restriction is in prac-

tice meaningless for all applications of this coordinate

conversion outside of, perhaps, seismic research.

It is assumed that the semi-major axis a and semi-

minor axis b of the reference ellipsoid are known and

that the reference ellipsoid is centered on the Cartesian

origin. Section IV describes the relationship between the

different formulations of ellipsoidal parameters. Given

the Cartesian point (x0,y0,z0), the corresponding lati-

tude, longitude, and ellipsoidal height are

Á= arcsin

μ
z(²2 +1)

Ne

¶
(66)

¸= arctan2(y0,x0) (67)

h= r0 cos(Á) + z0 sin(Á)¡
a2

Ne
, (68)

where z, ², Ne, and r0 are found by computing

e2 = 1¡ b
2

a2
²2 =

a2

b2
¡ 1 (69)

r0 =

q
x20 + y

2
0 p=

jz0j
²2

(70)

s=
r20
e2²2

q= p2¡b2 + s (71)

u=
pp
q

v =
b2u2

q
(72)

P = 27
vs

q
Q =

³p
P+1+

p
P
´2=3

(73)

Fig. 10. The force diagram used to derive the relationship between

the turn rate and the load factor. The force Fg is the force due to

gravity and is aligned with the negative z-axis. The force Fc is the

centripetal force, which points toward the center of the circle of

rotation when turning. During a level, coordinated turn, the aircraft

remains in the xy plane, which is perpendicular to the z-axis, with μ

being the bank angle of the aircraft. In the ideal scenario, a lift force

Fn is only produced in a direction perpendicular to the wings of the

aircraft. When the aircraft is not turning, the lift is straight up and

counters Fg . When the aircraft is in a coordinated turn, the lift is

such that the plane does not move in the z direction during the turn

and such that the required centripetal force Fc is present to make the

turn occur.

t= 1
6
(1+Q+Q¡1)

c=
p
u2¡ 1+2t (74)

w =
c¡ u
2

(75)

z = sign(z0)
p
q

Ã
w+

rp
t2 + v¡uw¡ t

2
¡ 1
4

!
(76)

Ne = a

r
1+

²2z2

b2
: (77)

The term e is known as the first numerical eccentricity; ²

is the second numerical eccentricity. The four-quadrant

inverse tangent in (67) is not uniquely defined at the

poles, when x= 0 and y = 0. However, many imple-

mentations of the four-quadrant inverse tangent, such

as the atan2 function in Matlab, will return zero in that
instance. On the other hand, the ArcTan function in
Mathematica correctly returns an indeterminate quan-

tity. In a practical system, it is often preferable for a

zero longitude to be returned at the poles rather than

something indeterminate.

Care must be taken with the outer square root in

(76), because when the argument is near zero, finite

precision problems have been observed to cause the ar-

gument to become slightly negative. A practical imple-

mentation should check for negativity and insert zero in-

stead. A similar check might be necessary for the square

root in (74).

APPENDIX C. A FLAT-EARTH PLANAR TURN MODEL

A. Deriving a Model for Circular, Planar Turns

A coordinated turn is one where an aircraft main-

tains a constant altitude and speed. Figure 10 is an ap-
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proximate free body diagram (ignoring drag, wind, and

the Coriolis force) of the forces affecting the center of

mass of a turning aircraft. The primary forces are grav-

ity Fg, which in a flat-Earth model can be aligned with

the local z-axis, and lift Fn, which is assumed to act

normally to the body of the aircraft. To maintain a con-

stant altitude, Fg +Fc should act perpendicularly to the

gravity vector. If kFck is constant, then the shape of the
aircraft’s maneuver will be a circle.

Constant-speed circular motion causes the accelera-

tion to be orthogonal to the velocity. If r̈t denotes ac-

celeration, then

r̈t =−t£ _rt, (78)

where £ denotes the cross product, the direction of

− is the axis of rotation, and the magnitude of −t
determines the turn rate at time t. For a coordinated

turn on a flat Earth, the turn must remain in the xy

plane. Consequently, the full dynamic model is

a(xt, t) =

264 _rt

−t£ _rt
0

375 −t =

264 00
!t

375 (79)

for a target state xt = [rt, _rt,!t]
0. The model in (79)

is the same as the basic two-dimensional horizontal

coordinated turn model in [40]. This model can easily

be expanded to a turn in an arbitrary plane by setting

−t = !turot, where urot is the rotation axis desired. To

make the model a flat-Earth approximation in a local

tangent plane on a curved Earth, set urot to the local

vertical at the point of reference. In Section V, the point

of reference was taken to be the starting point of the

trajectory.

B. Relating Turn Rates to G-Forces

Section V related the turns in the simulations to the

force felt by the pilot so as to justify the realism of

the turn rates used. One feels 1 G when standing on

the ground. A pilot will typically lose consciousness

for turns producing between 4.5 and 5 Gs, whereas

military pilots wearing “anti-G” suits can sustain up

to 8 Gs. Combat aircraft are usually designed for load

factors of at least 8 Gs [45]. Obviously, unmanned

aircraft could be designed to withstand turns that would

render a pilot unconscious. A reasonable baseline for

simulation design can be the parameters for the F-16

Fighting Falcon, which are given in Table I.

The term !t is the turn rate in radians per second and

can be related to the force felt by the pilot using simple

equations for centripetal acceleration. In the coordinated

turn model, ignoring wind and drag, the force that the

aircraft must generate to maintain altitude and speed

during the turn must counteract both the gravitational

force and the centripetal force, as shown in Fig. 10. The

centripetal force can be written from the acceleration in

(79) as
Fc =m−t£ _r, (80)

where m is the mass of the aircraft. The force that the

aircraft must generate to maintain altitude and speed

during the turn must counteract both the gravitational

force and the centripetal force, as shown in Fig. 10. This

normal force, designated by Fn, is the lift produced by
the plane such that a centripetal force of Fc is obtained.
The normal force is thus

Fn = Fc¡Fg (81a)

=m−t£ _r¡mg, (81b)

where g is the acceleration due to gravity (kgk ¼
9:81m=s2) on the surface of the Earth.

Dividing out the mass in (81b), the acceleration is

obtained. When the magnitude of the acceleration is

divided by kgk, the load factor, which is the G-force
felt by the pilot, is obtained18

G-force =
k−t£ _r¡ gk

kgk : (82)

Equation (82) is useful in that it can express the G-force

felt by the pilot not only for coordinated turns, but also

for circular turns in any axis. In such an instance, the

vector −t need not point to the local vertical. Equation

(82) was used in Section V to find the maximum G-

force of the turns under the weaving maneuver model

of Appendix D for weaves outside of the local tangent

plane.

When performing a level coordinated turn, that is −t
is as in (79), then (82) can be simplified to

G-force =

p
(!t)

2k _rk2 + kgk2
kgk : (83)

In such an instance, the G-force can be related to the

bank angle μ of the aircraft in Fig. 10 by substituting

(83) into the expression for the tangent of μ to obtain

G-force =
p
(tan[μ])2 +1: (84)

On the other hand, if the turn is in the vertical direc-

tion, then the maximum G-force is felt when the cross

product of the turn axis and velocity vector aligns with

the gravitational acceleration and is

G-force = 1+!
k _rk
kgk : (85)

More sophisticated aircraft dynamic models, such as

[49] and other models based on aircraft aerodynamics

as surveyed in [40], require significantly more elements

in the target state. Aircraft turns need not always be cir-

cular in nature, especially if the turn is not in the tangent

plane. For example, parabolic trajectories are often used

18Equation (82) does not differentiate between positive (feel pushed

down in one’s seat) and negative (feeling pulled out of one’s seat) G-

forces (load factors). Aircraft typically have different tolerances for

positive and negative load factors before they break. As per Part 23,

Section 337 of the FAA’s Federal Aviation Regulations, the negative

load factor that small aircraft in the United States must withstand is

only 40%—50% the magnitude of the maximum tolerable positive load

factor.
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to obtain weightless environments without going into

space [33]. Nonetheless, the model in this appendix can

be useful, because it requires fewer parameters than the

sophisticated model of [49] and can thus be initialized

with a smaller number of measurements if used in a

target tracker. For general circular turns, the orientation

of −t would also have to be estimated.

APPENDIX D. A FLAT-EARTH WEAVING TARGET
MODEL

A. Deriving a Model for Variable-Rate Planar Turns

Weaving target models often arise when designing

proportional navigation systems for missiles, such as

in the examples discussed in [82, Chs. 21, 26, 30] and

[56], where weaving is considered as a countermeasure.

A simple weaving target model can be obtained by

varying the turn rate !t in the coordinated turn model

of Appendix C as a function of time.

Consider setting

!t = Acos(®t+ μ0), (86)

where ® is the weave rate, μ0 is a phase offset, and A is

the weave amplitude. The weave amplitude determines

how much the target varies from a straight trajectory.

For simplicity, it is assumed that A > 0. A reasonable

upper bound on the weave amplitude would be such

that the target traces out a series of 180± turns that
alternate in direction so that the target moves forward.

A weave amplitude resulting in total turns greater than

180± would have the target doubling back on its path in
parts and not necessarily following a clear trajectory.

To determine the upper bound on A, consider the

case where μ0 = 0, without loss of generality. In such

an instance, at time t= 0, !t is at its maximum. The

integral of !t over time gives the total turn. For a target

to make a series of 180± turns of alternating directions,
the accumulated angular change should be a quarter of

a circular rotation; that is

¼

2
=

Z ¼=2®

0

Acos(®t)dt: (87)

Consequently, the maximum allowable value of A be-

fore the trajectory starts describing loops is

A· ¼®
2
: (88)

Smaller values of A make the track straighter. To make

the overall direction of the weaving track follow a

desired path, set the initial velocity point in the overall

direction of the path and set μ0 =¡®t at the initial time
t when the weaving trajectory begins.

B. Determining How to Arrive At a Desired Point

In the simulations, the parameters were chosen such

that a desired integer number of weaves were made

from the starting position to get to an ending position

a known distance away. In this section, the time and

speed needed to perform the desired number of weaves

and end up at the desired ending position when the

weaves are made is derived. It is assumed that the track

begins with ®t+ μ0 = 0 and, without loss of generality,

that the x-axis is aligned with the initial direction of

motion and the weave is in the xy plane. The assumption

that ®t+ μ0 = 0 can be replaced by setting the initial

time to 0 and μ0 = 0. These assumptions mean that the

trajectory reaches the desired point at a time when y = 0.

Using (86) and (79), along with these assumptions, the

accelerations in the x and y coordinates can be written

r̈x,t =¡A_ry,t cos(®t) (89)

r̈y,t = A_rx,t cos(®t): (90)

Solving for _ry,t in (89),

_ry,t =¡
r̈x,t

Acos(®t)
, (91)

and taking the derivative of (91) with respect to time

yields

r̈y,t =¡
...
rx,t+®r̈x,t tan(®t)

Acos(®t)
: (92)

By combining equations (90) and (92), one obtains the

differential equation

0 =

...
rx,t

Acos(®t)
+

r̈x,t

Acos(®t)
(® tan(®t))+A_rx,t cos(®t):

(93)

It can be verified that a solution to (93) is

_rx,t = c1 cos

μ
Asin(®t)

®

¶
+ c2 sin

μ
Asin(®t)

®

¶
: (94)

The values of c1 and c2 can be directly found from

the initial conditions at time t= 0: _rx,tjt=0 = _rx,0 and
_ry,tjt=0 = 0. Applying these initial conditions to (91) and
(94) yields

c1 = _rx,0 c2 = 0, (95)

so that (94) becomes

_rx,t = _rx,0 cos

μ
Asin(®t)

®

¶
: (96)

Next, it is known that at the final time on the trajectory

tend, which is still unknown, the y position of the target

should be equal to the initial y position (it ends with an

integer number of weaves). Without loss of generality,

assume that ry,0 = 0, which implies

ry,t
end
=

Z t
end

0

_ry,tdt=

Z t
end

0

_rx,0 sin

μ
A

®
sin(®t)

¶
dt= 0:

(97)

The ending position with respect to the y axis is zero

when

®=
2¼Nw
tend

, (98)

where Nw is the positive integer number of weaves

desired, because the integral is over an integer number

of periods of the inner sine in (97) and the outer sine has
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no phase offset. Thus, for every t such that the argument

of the integral has a positive value, there exists a t offset

by a fraction of the period of the inner sine to cancel

that.

Using (96) and (98), and assuming without loss of

generality that the rx,0 = 0, the distance traveled in the

x direction up to time tend is

rx,t
end
=

Z t
end

0

_rx,tdt

= _rx,0

Z t
end

0

cos

μ
Atend
2¼Nw

sin

μ
2¼Nw
tend

t

¶¶
dt: (99)

The distance traveled rx,t
end
is a known quantity that gets

one to the desired location along a geodesic curve from

the initial location. The only unknown term in (99) is

the travel time tend.

From (98) and (88), the bound on A becomes

A· ¼
2Nw
tend

: (100)

If A is equal to the maximum value in (100), the

argument of the cosine function in (99) is within the

range §¼=2, so the cosine function is always positive.
However, if a larger A is used, then the cosine function

can be negative, causing the target to go backwards in

the x direction. The backwards motion of the target with

A larger than the limit in (100) confirms the limit on

A of Subsection D-A. To simplify the notation in the

following optimization routine, A is expressed as a scale

factor ¯ (0< ¯ · 1) times the maximum allowable value
of A; that is,

A=
¼2Nw
tend

¯: (101)

Figure 11 shows how the shape of the curve changes

with different values of ¯.

Given bounds on tend (tend < 3rx,t
end
=_rx,0 was used as

an ad-hoc upper bound in the simulations) and noting

that (99) increases monotonically for allowable values

of ¯, one can numerically estimate tend with the opti-

mization

t̂end = argmin
tend

¯̄̄̄
rx,tend

¡ _rx,0
Z tend

0

cos

μ
¯
¼

2
sin

μ
2¼Nw
tend

t

¶¶
dt

¯̄̄̄
:

(102)

Equation (102) can be numerically solved using a line

search technique, such as the golden section search de-

scribed in [4, Appendix C], with a numerical integration

technique, such as those described in [6, Ch. 4]. In Mat-

lab, one can use the function fminbnd to perform the

minimization with integral for the numerical integra-
tion. In Mathematica, one can use the NMinimize com-
mand for the minimization with the NIntegrate com-
mand for the integration. Consequently, given a speed
_rx,0, a desired distance traveled along the initial direction

of motion rx,t
end
, a value of ¯ determining the relative

amplitude of the weave, and the number of weaves Nw,

Fig. 11. The weaving motion for the same displacement, speed,

and number of weaves varying only ¯, whereby tend also changes so

the same endpoint is reached. The solid red line is ¯ = 1; the dashed

green line is ¯ = 1=2. The axes are in unit of meters, the speed is a

constant 10 m/s, and Nw = 6.

Fig. 12. An example of a spiraling trajectory starting from the

origin with vl = [100 m/s,0,0]
0, vs = [0,50 m/s,0]

0, and ! = ¼=4.
The axes are in units of meters.

the time necessary to travel the desired distance can be

determined.

On the other hand, if one wishes to create a simu-

lation that goes a particular distance rx,t
end
weaving Nw

times with amplitude scale factor ¯ over a fixed period

of time tend, then the necessary speed is simply

_rx,0 =
rx,t

endR t
end

0 cos

μ
¯
¼

2
sin

μ
2¼Nw
tend

t

¶¶
dt

: (103)

APPENDIX E. A FLAT-EARTH SPIRALING DYNAMIC
MODEL

In [9], a non-ballistic flat-Earth spiraling dynamic

model is derived by rotating the axis of a coordinates

turn about the velocity vector.19 One formulation of this

19Readers are advised to consider [59] if a ballistic spiraling model

is desired.
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model is

r̈=−£ _r (104)

_− = !̃

μ
−£ r̈

k _rk
¶
, (105)

where − is the instantaneous turn axis that is orthogonal

to the velocity and !̃ is a constant affecting the rate of

the spiral. Generally, − does not have unit magnitude.

The spiraling dynamic model of [9] is a constant-

velocity model and ignores the effects of gravity. Unlike

the weaving model of Appendix D, it is difficult to

determine the actual direction in which the target will

travel during the spirals.

Thus, an alternative constant-velocity spiralingmodel

is presented here. Again, this is an approximate model

that is not directly derived from aerodynamic and grav-

itational equations. The new spiraling model is

_r= vl+ vs (106)

_vs = !

μ
vl
kvlk

¶
£ vs: (107)

A drift equation corresponding to this model is

a(xt, t) =

264 _r_vs
_vs

375 (108)

for a target state of xt = [r, _r,vs]
0 (_r and vs differ by a

constant offset, so two of the derivative vectors in the

drift equation are equal). Figure 12 shows an example of

a trajectory arising from the spiraling dynamic model.

In practice, since vs = _r¡ vl, the vs term does not

need to be stored directly in the state. In the model of

(108), the velocity _r is the sum of orthogonal linear

vl and turning vs components. The linear component is

time-invariant. The turning component rotates about the

linear component with a turn rate of ! rad/s. To make a

target spiral in a particular direction, vl should point in

the desired direction of motion. The magnitude of vl is

the speed at which the target advances along the average

trajectory about which the spiral turns, and vs has to be

orthogonal to vl. When programming a simulation of

a spiraling target where the spiral neither ascends nor

descends, it is reasonable to set the initial direction of

vs to the local vertical. In a flat-Earth model, this is

generally the z-axis, since vl would usually be placed

in the xy plane. The magnitude of vs determines the

distance of the target from the center of the spiral as

well as the G-forces felt by the pilot.

The relationship between the distance of the target

from the center of the spiral and the magnitude of vs
can be determined by solving the differential equations

for position. This determination can be made by assum-

ing that vl = [v
l
x,0,0]

0 and vs = [0,v
y
s ,v

z
s ]
0. In such an in-

stance, it can be verified that a solution to the differential

equation in (107) has the form

vys = c1 cos(!t) + c2 sin(!t) (109)

vzs = c2 cos(!t)¡ c1 sin(!t), (110)

where c1 and c2 are constants determined by the initial

conditions and t is time. Assuming that at time t= 0,

vys = 0 and v
z
s = vM , then c1 = 0 and c2 = vM . Substitut-

ing vs, with y and z components given by (109) and

(110), into (106) and integrating from time t= 0, at time

t the target will have moved from its initial position by

r=

26664
vlxt

vM
!
(1¡ cos(!t))
vM
!
sin(!t)

37775 : (111)

The magnitude of the y and z components, which are

the only components affected by vs, is a constant vM=!

and the rotational velocity is a constant kvsk= vM .
Consequently, the ratio of the rotational velocity to

the turn rate determines the radius of the spiral. As

for setting realistic bounds on the values so that the

G-forces tolerable by a pilot will not be exceeded,

the values in Appendix C-B are relevant given ! and

the magnitude of vs, since those are the only velocity

components that experience acceleration in the model.

Unlike with the weaving model of Appendix D, it is

fairly simple to have the simplified flat-Earth spiraling

target model go a desired distance in the xy plane: If vl
is in the xy plane and ! times the traveling time T is

a multiple of 2¼, then the target will be located at vlT

from its original position.
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Sur les phénomènes d’orientation des corps tournants en-
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